Waymo highlights this in its robotaxi fleet, which processes multimodal data to complete over 250K paid rides weekly with high reliability. Tesla’s Full Self-Driving Computer processes high-rate image input, handling camera streams of up to approximately 2.5 billion pixels per second through its camera serial interface. Its image-signal processor manages approximately 1 billion pixels per second from high dynamic range (HDR) sensor inputs. The system combines this data with inputs from multiple cameras and sensors to enable AI-driven perception and decision-making in near-real-time driving scenarios. Additionally, the startup offers plug-and-play solutions that simplify deployment in safety-critical applications such as EV fast charging and sensor integration.
⚖️ Regulatory Hurdles and Ethical Dilemmas in Autonomous Tech
The AV market is projected to reach USD 1.73 trillion by 2033, growing at a CAGR of 31.85% from 2025 to 2033. Automakers are investing in cybersecurity technologies such as hardware security modules (HSMs), AI-based intrusion detection systems, and secure over-the-air (OTA) updates to address these challenges. Automotive Manufacturing Solutions (AMS) is the essential resource for automotive manufacturing professionals and suppliers globally. We invite you to revisit these top stories, share your perspectives, and stay tuned for more in-depth coverage of the trends shaping the automotive world. Looking ahead, JLR’s focus on carbon-neutral manufacturing and environmentally responsible practices sets a powerful example for the industry. The answer lies in education, infrastructure, and trust-building—slow but steady wins the race.
This EV Just Set an Efficiency Record
- Therefore, these were the five trends transforming the automotive industry this year and beyond.
- Its vehicle control system processes passenger comfort thresholds related to acceleration, deceleration, and jerk rate.
- More than 12% of consumers who financed a new car in June of 2022 had a monthly payment of $1,000 or more.
- Its product, THINKey, transforms smartphones into digital keys that allow users to lock, unlock, and start their vehicles.
- Moreover, V2X communication systems allow vehicles to interact with each other and infrastructure, improving traffic flow and reducing accidents.
In 2025, electrification and software integration will have an essential impact on the automotive industry. These tendencies are long-term and are expected to continue shaping the auto industry in the near future. In the next section, we’ll explore these and other automotive sector trends in more detail, and see how they will evolve in 2025. Environmental concerns and technological innovations are advancing faster than many anticipated. From electrification to IoT connectivity, these shifts are changing the way cars are manufactured, sold, repaired, and driven. Shared micromobility vehicles are becoming a popular mode of transportation in cities where the pollution from cars and traffic congestion is particularly evident.
Industry 4.0 and Digitalization in Manufacturing
However, sales of robotaxi vehicles will remain a minority, as safety concerns, legislative bottlenecks and the high cost of operations restrict growth. The current trends in the automotive industry seen in previous years will remain in 2025 and are likely to become automotive future trends. The auto manufacturers who rely on the older versions of chips which are not advanced and powerful will disrupt the growth of the automotive industry.
OEMs are juggling more regulations with fluctuating demands and ongoing chip shortages
Toyota unveiled its forward-thinking approach to electric vehicle design, focusing on sustainability, performance, and cutting-edge technology. Peugeot introduced groundbreaking technologies like the Hypersquare control system and steer-by-wire, marking a significant leap in electric vehicle design and user experience. These innovations represent the brand’s commitment to redefining driving dynamics in the EV era.
❓ FAQ: Your Burning Questions About Automotive Trends Answered
For example, its StellarAi data intelligence platform offers templates to quickly identify engineering variables, trends, and vulnerabilities. AI technologies like machine learning, deep learning, and computer vision are advancing robotic automation. They play pivotal roles in guiding self-driving cars, managing fleets, enhancing driver safety, and refining services such as vehicle inspections and insurance. Autonomous vehicles (AVs) are advancing transportation by minimizing the need for human drivers and enhancing last-mile delivery efficiency. These vehicles improve public transport safety by reducing accidents caused by human error.
- The Automotive Trends & Startups outlined in this report only scratch the surface of trends that we identified during our data-driven innovation & startup scouting process.
- Long journeys are no longer exhausting and tedious, as everyone on board can watch movies, stream their favorite music, and play games through pre-loaded entertainment services.
- Here’s how TikTok unboxings and gaming are driving one of 2025’s top retail trends.
- This transformation has further streamlined the vehicle architecture, facilitating over-the-air software updates, more efficient management, and lowering overall complexity.
- EVs typically use 2-3 times more semiconductor content than internal combustion engine models, and in powertrain-specific components, that multiplier is possibly higher.
- Road safety, regulatory mandates, autonomous vehicle adoption, and smart city development drive this innovation.
- Voice search assistants help optimize interfaces for advertisements and voice search queries.
Electric Vehicle (EV) Expansion: EV Sales Reached 17M Units in 2024
This approach equips them to differentiate their offerings, with software being the key to creating compelling customer experiences. The study offers data-based insights and recommendations for action for decision-makers in the automotive sector. Gain in-depth insights into the key developments that characterise the automotive industry. UK-based startup Distributed Additive Manufacturing (DAM) offers 3D printing services including design, building, and finishing of parts.
Nissans to Look For at Tokyo Auto Salon
Canadian startup KonnectShift provides IoT solutions to optimize fleet and asset management. The startup develops Konnect – GS01, an automatic electronic logging device (ELD) to continuously track vehicular health. Israeli startup DAV offers a decentralized autonomous vehicles platform based on blockchain technology.
It offers more sustainable 3D printing by developing its own large-scale printing hardware and using fully recycled composite materials. DAM can print parts as large as 1000x3000x1000mm using engineering-grade recycled plastics. Firstly, it accelerates the design and testing process through rapid prototyping.
Instantly Analyze Any Market
Silicon carbide (SiC) semiconductors improve energy efficiency in high-voltage EV systems by reducing losses and enhancing thermal management. Moreover, Asia-Pacific leads the automotive semiconductor market with a 45% global share. In Europe, the EU’s Chips Act aims to raise the bloc’s share of global chip production from under 10% to about 20% by 2030. Moreover, the startup offers fleet-grade protection through continuous monitoring and predictive alerts. Its intelligent asset tracking defends vehicles against spoofing, ransomware, and remote control attempts.
Toyota continues to emphasize hybrids as a critical part of its electrification strategy. Let’s have a closer look at the top automotive trends poised to dominate the landscape in 2025. Supplemented by the categorisation of our experts, a clear picture emerges of where the industry stands – and where it should develop in order to remain fit for the future. Automakers are also adopting hyper-personalized features to offer customized experiences through infotainment systems, user profiles, and real-time navigation updates.
Hydrogen May Fuel the Future of the Automotive Industry
AI is also transforming automotive manufacturing by speeding up production and cutting costs. In 2024, the automotive industry experienced significant transformations, with advancements in electric vehicles (EVs), autonomous driving technologies, and shifts in global markets. Moreover, high-performance computing platforms supply the processing power needed to run these systems in real time.
- The U.S. National Highway Traffic Safety Administration (NHTSA) plans to require automatic emergency braking (AEB) systems in all new light-duty vehicles by 2026.
- When it comes to the benefits of connected cars, it seems that drivers are more willing to allow for data collection, too.
- By 2025, we could see a broader adoption of fuel cell vehicles, especially in regions like Europe and Asia, where hydrogen infrastructure is beginning to grow.
- The efficiency of electric power fused with the reliability of traditional engines has contributed to the rise of hybrid vehicles.
- According to a study completed by INRIX Transportation, Honolulu, New Orleans, and Nashville are the three US cities that stand to gain the most from micromobility vehicles.
- Advanced cameras paired with computer vision enable vehicles to classify road users, read signs, and recognize traffic signals, directly supporting ADAS and autonomous navigation.
- Automotive suppliers are renegotiating their vendor/supplier contracts to align with these new predictions.
- The chip shortage is proving to be costly for the industry with many auto manufacturers shutting down plants due to low supply.
Several leading OEMs have already announced plans to adopt the chipset for their automotive solutions, including BYD, Nuro, XPENG, Volvo and Zeekr. Contact us today to make critical data-driven decisions, prompting accelerated business expansion and breakthrough performance. With customers becoming more demanding, rules and regulations are becoming stricter, and competition is stronger and faster.
Despite initial scepticism, the automotive industry is embracing enhanced connectivity by enabling real-time updates and post-production feature additions. Through our work with automotive innovators, we witness first-hand how rapidly this sector is evolving. From electrification and software integration to new mobility models, the industry faces unprecedented change.
This trend is reshaping how manufacturers think about scalability and flexibility, particularly as the demand for electric vehicles continues to grow, and will continue to make itself felt throughout 2025. EV technology is the catalyst for transformation—it’s forcing OEMs to rethink vehicle architecture, supply chains, and customer engagement. Battery improvements reduce costs and increase range, making EVs more accessible. EVs also enable new business models like vehicle-to-grid services and battery leasing.
EV sales are going to increase aggressively in 2025, providing a bright spot in the automotive industry. Governments are implementing innovative policies to encourage sales without increasing costs or benefiting high-income households. Car dealerships are no exception, as recent auto trends reveal that customers prefer to experience a car or dealership before purchasing. Top car brands and dealerships are embracing VR as part of their dealership photography strategies to improve the customer experience. The shortages have forced manufacturers to delay product launches and reduce outputs, among other issues. Asia, home to key production hubs, remains at the epicentre of attempts to address this crisis, with nations like Taiwan investing heavily in scaling chip production.
Driverless Vehicles- The Future of Connected Cars
The region’s substantial market share results from government incentives and the growth of the automobile industry. The increasing adoption of EVs globally drives the optimization of energy usage and enhances features like regenerative braking systems through sensor fusion technologies. To accommodate the rising demand for EVs and autonomous vehicles, major automakers such as BMW, Hyundai, and Stellantis are investing in EV battery plants and semiconductor-related facilities. Sensor fusion and autonomous vehicle technologies enhance safety and enable intelligent driving solutions while ADAS bridges the gap to full autonomy.
Hyundai Crater Concept Teases the Next XRT Models
- Tangram Vision allows perception teams to focus on product-specific features by handling complex sensor tasks and accelerating development and deployment processes.
- In the next section, we’ll explore these and other automotive sector trends in more detail, and see how they will evolve in 2025.
- It incorporates various AI-powered technologies like adaptive cruise control, automatic emergency braking, and lane-keeping assistance, allowing vehicles to navigate complex road conditions autonomously.
- Compared to EVs, they don’t require charging, but at the same time reduce carbon emissions.
- Moreover, it enables companies to customize their fleet by choosing preferred brands, models, and service options, ranging from premium to ultra-luxury vehicles.
- AI, additive manufacturing, the Internet of Things, and 5G have become sources of product innovation and manufacturing efficiency, which in turn has led to revolutionary changes in customer experience.
- Also, cloud and edge computing balance fleet-scale analytics with millisecond in-car inference.
The Automotive Trends & Startups outlined in this report only scratch the surface of trends that we identified during our data-driven innovation & startup scouting process. Identifying new opportunities & emerging technologies to implement into your business goes a long way in gaining a competitive advantage. The vehicle’s architecture includes a 3D mapping system that merges GPS and IMU data with digital maps to determine precise positioning and plan optimal routes. Front-facing LiDAR scans the road to detect objects, track pedestrians, and respond to traffic to enhance safety.
Autonomous vehicles are reshaping mobility, from AI‑powered perception to intelligent infrastructure and generative simulation. This report explores how breakthrough technologies are accelerating the shift toward safer, smarter, and more sustainable transportation systems worldwide. Automakers will continue to incorporate these systems into even more affordable models, making safety technologies more accessible to a broader range of consumers. By leveraging tech and sustainable practices, the automotive sector can meet the challenges of tomorrow while delivering exceptional value to consumers.
EcoG builds an Electric Vehicle Charging Platform
Drivers benefit from Voicera ID, a voice-based virtual assistant that helps them keep track of the information they need. Additionally, the onboard speed recorder limits the speed to discourage dangerous driving behaviors. Connected vehicles are fostering new business models centered on shared mobility, offering an alternative to traditional vehicle ownership. This shift supports mobility-as-a-service (MaaS), reducing the number of idle vehicles and addressing urban transportation needs without adding more cars. German startup ChargeX offers a modular EV charging solution that converts parking spaces into charging stations.
Consumer Health in Brazil
In 2025, new registrations of electric vehicles – BEVs (battery electric vehicles) and PHEVs (plug-in hybrid electric vehicles) – are anticipated to reach a record 18.1 million – up from 16.3 million in 2024. However, growth EV adoption is predicted to slow, with year-on-year growth falling from 15% in 2024 to 11% in 2025. This continues a trend in the EV industry, which has been challenged by the high cost of vehicles and a lack of charging stations.
EVs drive the shift to greener mobility and it is aided by advancements in semiconductors for smarter and efficient vehicles. OEMs are investing billions in EV platforms, battery R&D, and charging infrastructure partnerships. Legacy brands like Ford, GM, and Volkswagen are launching dedicated EV lines, while startups like Rivian and Lucid push luxury and performance boundaries.
The startup uses automotive sensors and compute platforms to offer a scalable solution for cars to enable large-scale fleet learning. German startup SafeAD develops a vision-first perception and scene-understanding pipeline for autonomous driving. The charging infrastructure is more vulnerable as a result of the quick uptake of EVs, which hackers may attack to obtain customer information or interfere with services. The need for high-performance processors is also growing as a result of software-defined vehicles (SDVs), which rely on semiconductors for ongoing updates and subscription-based services.
It highlights workforce trends, leading investors, and key technologies driving adoption across vehicles, batteries, charging, and software. However, the primary function of these cars is not just to entertain they can connect to other vehicles (V2V), pedestrians (V2P), infrastructure (V2I), and cloud (V2C). Lastly, there’s even a term “vehicle-to-everything” (V2X), which includes all types of vehicle communication. This infrastructure ensures the safety of drivers and passengers and can even send emergency SOS messages to respective services in case of an accident, sharing all the critical information. Connectivity also enables remote diagnostics, alerts the driver about necessary maintenance, and promotes both safety and cost-efficiency.
The platform allows autonomous vehicles to discover AVs, service providers, or clients around them. The vehicle-to-vehicle (V2V) communication is either on-blockchain, with smart contracts or off-blockchain using DAV’s protocols. The startup develops protocols for drone charging networks, drone flight planning, and open mobility. Advanced manufacturing technologies, such as megacasting and giga-stamping, are playing a pivotal role in enabling the industry’s transformation. Megacasting, which involves producing large aluminium castings to replace multiple smaller components in vehicle structures, is gaining momentum in the automotive industry.
US-based startup NuNami designs automotive semiconductors that provide reliable connectivity and safety-critical interfaces. Its modules integrate high-voltage isolation, digital error correction, and built-in self-testing to ensure secure data transfer and fault-tolerant operation in automotive systems. They also incorporate floating-point units that improve computational accuracy and performance. The startup provides single-chip motor control solutions that integrate RISC-V processor cores with programmable MOSFET drivers, FD-CAN and LIN interfaces, and dedicated PWM modules. The systems optimize the performance of electric power steering, vehicle pumps, cooling fans, and HVAC modules. EVs typically use 2-3 times more semiconductor content than internal combustion engine models, and in powertrain-specific components, that multiplier is possibly higher.
With a computer all the secrets hidden in a VIN or smartphone, buyers can choose desired features, secure financing, and even take virtual walk-around and test drives. In 2025, more dealerships are expected to offer online sales, vehicle inspection, and home delivery. Solid-state batteries, which promise to offer higher energy density and improved safety over traditional lithium-ion batteries, are on the horizon. These batteries can provide longer driving ranges and faster charging times, which have historically been limitations for EV adoption. Automakers like Toyota and QuantumScape are heavily investing in this technology, and we can expect breakthroughs in battery chemistry and design in the coming years.
Waymo’s Autonomous Cars: A Look at the Future of Transportation in Los Angeles
The industry trends show a positive perspective for the times to come despite the expected global slowdown and supply chain disruptions. As a car seller, dealer, or manufacturer, you must only build flexible yet solid automotive marketing strategies and create a strong sense of customer trust and loyalty. Make sure you stand out from your peers by focusing on every intricate detail through marketing and staying at the top of buyers’ minds. The future of automotive industry trends suggests that the automotive parts market will grow aggressively due to a growing demand for replacement parts and an increase in vehicle production.
Even six months into 2022, vehicle manufacturers haven’t been able to correct the issue of low inventory. Reports from 2022 showed vehicle inventory was stagnant, sitting between 1 million and 1.1 million vehicles, for the first six months of the year. Sales of passenger cars were down 25% in the first half of 2022 compared to the same period in 2021. Many expected the auto industry to mount a post-pandemic rebound in 2021, but that didn’t happen. Search volume for “Infineon Technologies” has seen modest growth over the past 5 years.